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Geometric quantization of curvature energy in equipotential surfaces
of ionic crystals
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The curvature energies of triply periodic minimal surfaCEBMS) and zero equipotential surfaces
(ZEPS of ionic crystals are both quantized with the Euler—Poinchi@ acteristic as the “quantum
number,” and the curvature energy of the TPMS larger than that of the corresponding ZEPS.
Quantization is imposed by the charge-defined metric.2@2 American Institute of Physics.
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“There is nothing in the world except empty curved space.ZEPS of CsCl it is close to th® TPMS. The ZEPS are
Matter, charge, electromagnetism and other fields are onlgenoted by an asterisk to distinguish them from their TPMS

manifestations of the curvature of space.” counterparts. We have expressed e ZEPS for the CsClI
John Archibald Wheelef1957 lattice, considered as a periodic distribution of ideal point
charges, in terms of Jacobi’s elliptic theta function® as
INTRODUCTION "
Triply periodic minimal surface§TPMS) are surfaces jo tdt( 39395~ 949494) =0,

for which the mean curvaturé] = (k;+k,)/2 is zero at ev-
ery point, wherek, andk, are the principal curvatures. The where the arguments of the theta functions axe 7y, and
Gaussian curvature is defined Ks=k;k,. At most points 7z and expt-t?). The charge density distribution is given in
k,=—Kk,#0, so thatk is negative. Exceptionally, there are terms of finite sums of periodié functions as

“flat points” where k; =k,=0. TPMS are omnipresent in the N w

qatural and manmgde worlds, providing a cqncise descrip- P([):z g, z s(r—r;—K),

tion of many seemingly unrelated structuteshich can be j=1 Tk=-c=

described in terms of curved nets folded onto periodic mini-

| surface3 TPMS tiall il th ; where the unit cell containd chargesy; at points ¢;—Kk),
mal surtaces: are essentially soap 1lims, the surtace,,q he components &ftake integer values. Using the fun-
areas of which are minimized by ttfgvo-dimensional sur-

. 4 damental formula of crystallography we rewrite this expres-
face tension forces. They are of interest not only to the struc,

) , ) Sion as a three-dimensional Fourier series

tural chemist, but also to the biologfsstructural engineer
and the materials scientisEor example, the structure of the N ”

: - - . = ) 2mh (r—rj)
zeolite analcime is described by tBesurface? the P surface p(r)= Zl q]h_Zm e i
occurs in etioplasts and in sea urchin spifiemd theD o
surface is found in glyceryl mono-oleate—water mixtuftes. The potentiakp is obtained by convoluting the charge distri-
TPMS may even have applications in cosmology as membution p with the 1f decay of the potential generated by an
branes(or “branes”).’ isolated point charge

An equipotential surface is a surface of constant poten-
tial within a distribution of positive and negative charges. In @([)=f dép(&)/|r—&|.
crystal structures, th& =0 surface is known as the zero o i
equipotential surfac€ZEPS. It is thus the result ofthree-  The Fourier convolution theorem gives the coefficientgpof
dimensiongl electrostatic interactions. The ZEPS are triply in terms ofp multiplied point-wise by the Fourier transform
periodic and closely resemble the TPMS. For example, thef the decay function 1/ so that

1 © g2mih -ty g N . cos 2rh(x—X;)cos 2rk(y—y;)cos 2l (z—z))

@([):—2 q; > T:;jzl qjh'§=0 h2r K212 ' (8]

where the prime on the last sum indicates that terms are to be
multiplied by 1/2 for each zero index. This series is onl
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lattice must be single-valued, which suggests that differengests that multiple solutions of distinct genus, which we con-
orders of summatiorii) correspond to different zero-point sider a quantized topological index, occur for a range of
energies associated with the field; lead to an infinite set different crystal arrays. The Helfrich Hamiltonian for TPMS
of potentials associated with any given array. reduces to a simple expression, which via the Gauss—Bonnet
theorem may be written &= —27 By, where|8|>0.
The excited states of the crystal constitute an infinity of
CURVATURE ENERGY different ZEPS forming the complete set. For the CsCl lat-

Quantum mechanics attributes the existence of zerolice, this is the manifold of surfaces of increasing curvature,

point energy to the curvature of the wave function describingluantized by the Euler“—Poinéa@aracteristic,_ with the
the ground state. The curvature energy of a surface is givep@Mme symmetry as the (“Schwarz”) TPMS, which repre-

by the Helfrich Hamiltoniat sents the archetypal structure for this crystal symmetry. Pa-
rametrization of the® surface has allowed us to calculate its
H= f dg2a(H— )2+ BK], ) coordinates analyticallf* Alternatively, the coordinates of
this surface can be given in the forf{x,y,z) as a two-term

whereH andK are the mean and Gaussian curvatures, renodal expansion of its generating space gréupdm asf,
spectively, and integration is over the total surface area. The-{1,0,0,—0.1507631,1,1}.**
bending rigidity« (a>0) and saddle-splag (|8|>0) are The curvature energy of the basis set of allowed states is,
the two elastic moduli, whiley is the spontaneous curvature, therefore, quantized with the Euler—Poincatearacteristic
which vanishes for balanced surfacékose which inter- as the quantum number. There is thus a connection between
change the partial sub-spaces which they divide guantum field theory and surfaces which describe the basis

The Gauss—Bonnet theorem relates Gaussian curvatugets of wave functions of the field. We assume that selection
to the Euler—Poincareharacteristicy, via —2wy= [KdS, rules governing allowed and forbidden transitions exist. In
so that the contribution to the curvature energy from theCsCl, where field states are described by Rfesurface and
saddle-splay deformation is8=g for both surfaces. In turn, its higher genus counterparts, quantum transitions may take
the genusg, of a surface is related to the Euler—Poincareplace from a state of Euler—Poincarbaracteristicy; to a
characteristic byy=1— x/2. Since the genus must be equal state of characteristig,, with transition energy—2m(x,
to zero or to a positive integey, can take the integer values — x1) 3. There may also be a transition from a stgteof
of 2,0,-2, —4.... one crystal latticge.g., CsCl,B,), to the statey, of a dif-

Equation(2) can be used to calculate the relative curva-ferent crystal latticele.g., ZnS,By,), with transition energy
ture energies of thébalancedl P and P* surfaces, assuming —27(Bpx2—Bax1).- An example of the latter case is the
that « and 8 have the same magnitude and sign for both.martensitic transition in steét,from a structure of the CsCl
Both surfaces have the same Euler—Poincasracteristic of type, described by the surface = —4), to the ZnS type,
—4. As the mean curvature of a minimal surface vanisheglescribed by thé surface = —16), via the intermediate
everywhere, for thé® surface the contribution to the curva- G surface f=—8). The transition is defined by a single
ture energy from the bending component is zero, and th@arameter, the Bonnet angfe®*’
curvature energy oP* is larger by an amount2/H?dS. To summarize, the TPMS are the zero equipotentials of
The P surface can, therefore, be considered as the grounidhe field Hamiltonian. The energy is given b,
state in terms of curvature energy with a zero-point energy of= —2mx 3, for a surfacef,,, , wherea denotes the symme-
—8mB. try type, andy is the Euler—Poincareharacteristic of a

A very close nodal approximation for tHe* surface i$8 ~ member of the manifold of allowed states. The scalar poten-
f,=1{1,0,0;+0.090 039 5{1,1,1}, whereth,k,|} are reflection tials are described by TPMS, whose energy is the minimum
planes of the space gromgm (No. 221.2We have cal- possible under the Helfrich Hamiltonian. This curvature en-
culated the integral PH2dS numerically by summing the €rgy is quantized in units of72y, which is the consequence
components oHZ at the center of gravity of each tessalating ©f the curvature of the scalar potential, from which the field
polygon over the surface. The distributiontéf is shown in 1S derived by differentiation, vylt_h the m|n|m|zat|on_of.self.—
Fig. 1(a) by assigning a color cyclically to each value and energy.maklng the §urface mlnlmal_. The charge dlstr|put|on
scaled such that the minimum to maximum spans blue to redletermines the metric of the potential and hence the field.
The mean of the distribution oH? over the surface is
1.092 38, and the variance is 3.7251, with a minimum value

of zero and a maximum value of 6.16388. The curvatureVECTOR POTENTIAL

energy of theP surface is thus lower than that of tH* The mean curvature of a surface is equal to the diver-

surface by 2.1847& ~gence of the unit vectof, normal to the surfac¥ given by
Gozdz and Holyst generated a surface of genus 45 witha=v{(r), where the functionf(r) describes the surface.

the symmetry of th® surface, a surface of genus 73 with the HenceH=V A=0 at every point. A vector with zero diver-

symmetry of theD surface, and surfaces of genera 53, 69,gence and nonzero curl can be represented as the curl of the
109, and 157 with the symmetry of tisurface. In terms of  yector potential A, defined a¥

symmetry, these high genus surfaces are the equivalents of L
the P, D, andG TPMS, which are the ground curvature en- A= _rxf N2Ad\ @)
ergy states of ZEPS of corresponding symmetry. This sug- ~ o T
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(a) square of mean curvature, H? {b) magnitude of the current vector field, 1J|

[

(c) magnitude of the vector potential field, 1Al (d) magnitude of the vector potential field, 1Al
Coulomb gauge Lorentz gauge

FIG. 1. (Color (a) Plot of the distribution of the square of the mean curvaturfe,dder the P zero equipotential surface. The color scale spafg,Ho H?ax

from blue to red(see inset (b) Plot of the magnitude of the current vector figly permeating a CsCl unit cell at the surface of the P TPMS as the ground
state zero equipotential surface within the crystal latfitae to red. (c) The magnitude of the vector potential figld|, over the surface of the P TPMBlue

to red. Coulomb gaugeY A=0). The distribution of the magnitude of the vector potential in this gauge over the surface has a mean of 0.078 790 1, and
a variance of 0.008 397 37, with a minimum value of zero and a maximum value of 0.16@Y2&. in (c), but in Lorentz gaugeA’ =A+ YfI,PMS’). The
distribution of the magnitude of the vector potential in this gauge over the surface has a mean of 3.280 66, and a variance of 10.7864, with a maimum valu
of 3.046 69 and a maximum value of 3.627 60.

wherer=(x,y,z). For an electromagnetic field within the well’s third equation gives the current density vectbin
CsCl lattice, the vector potential is an elementary currenterms of the curl of the unit vector normal to the surface, as
density on theP surface. By Maxwell’'s equations, the field Jo«V XA.

within the lattice is electrostatitV X E=0 andV Exp) and Figure Xb) shows the magnitude of the current vecior
magnetostatiqdV H=0 and VXHxJ). We shall see that on the P minimal surface calculated using the exact
these equations are defined by geometry alone. The magnetioordinates? The zero contour of the surface was plotted as
field H, is the curl of the vector potentiadj =V X A. Max-  tessellating polygons. The magnitude of the current vector
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