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Geometric quantization of curvature energy in equipotential surfaces
of ionic crystals

Paul J. F. Gandy and Jacek Klinowskia)

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 23 July 2001; accepted 27 February 2002!

The curvature energies of triply periodic minimal surfaces~TPMS! and zero equipotential surfaces
~ZEPS! of ionic crystals are both quantized with the Euler–Poincare´ characteristic as the ‘‘quantum
number,’’ and the curvature energy of the TPMS larger than that of the corresponding ZEPS.
Quantization is imposed by the charge-defined metric. ©2002 American Institute of Physics.
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‘‘There is nothing in the world except empty curved spa
Matter, charge, electromagnetism and other fields are o
manifestations of the curvature of space.’’
John Archibald Wheeler~1957!

INTRODUCTION

Triply periodic minimal surfaces~TPMS! are surfaces
for which the mean curvature,H5(k11k2)/2 is zero at ev-
ery point, wherek1 andk2 are the principal curvatures. Th
Gaussian curvature is defined asK5k1k2 . At most points
k152k2Þ0, so thatK is negative. Exceptionally, there ar
‘‘flat points’’ where k15k250. TPMS are omnipresent in th
natural and manmade worlds, providing a concise desc
tion of many seemingly unrelated structures,1 which can be
described in terms of curved nets folded onto periodic m
mal surfaces.2,3 TPMS are essentially soap films, the surfa
areas of which are minimized by the~two-dimensional! sur-
face tension forces. They are of interest not only to the str
tural chemist, but also to the biologist,4 structural engineer
and the materials scientist.5 For example, the structure of th
zeolite analcime is described by theG surface;2 theP surface
occurs in etioplasts and in sea urchin spines;4 and theD
surface is found in glyceryl mono-oleate–water mixture6

TPMS may even have applications in cosmology as me
branes~or ‘‘branes’’!.7

An equipotential surface is a surface of constant pot
tial within a distribution of positive and negative charges.
crystal structures, theV50 surface is known as the zer
equipotential surface~ZEPS!. It is thus the result of~three-
dimensional! electrostatic interactions. The ZEPS are trip
periodic and closely resemble the TPMS. For example,
on
:
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ZEPS of CsCl it is close to theP TPMS. The ZEPS are
denoted by an asterisk to distinguish them from their TPM
counterparts. We have expressed theP* ZEPS for the CsCl
lattice, considered as a periodic distribution of ideal po
charges, in terms of Jacobi’s elliptic theta functions as8

E
0

`

tdt~q3q3q32q4q4q4!50,

where the arguments of the theta functions arepx, py, and
pz and exp(2t2). The charge density distribution is given i
terms of finite sums of periodicd functions as

r~rI !5(
j 51

N

qj (
kI 52`

`

d~rI2rI j2kI !,

where the unit cell containsN chargesqj at points (rI j2kI ),
and the components ofkI take integer values. Using the fun
damental formula of crystallography we rewrite this expre
sion as a three-dimensional Fourier series

r~rI !5(
j 51

N

qj (
hI 52`

`

e2phI �~rI2rI j !.

The potentialw is obtained by convoluting the charge distr
bution r with the 1/r decay of the potential generated by a
isolated point charge

w~rI !5E djI rI ~jI !/urI2jI u.

The Fourier convolution theorem gives the coefficients ow
in terms ofr multiplied point-wise by the Fourier transform
of the decay function 1/r , so that
w~rI !5
1

p (
j 51

N

qj (
hI 52`

`
e2p ihI �~rI2rI j !

uhI u2
5

8

p (
j 51

N

qj (
h,k,l 50

`
cos 2ph~x2xj !cos 2pk~y2yj !cos 2p l ~z2zj !

h21k21 l 2 , ~1!
o be
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where the prime on the last sum indicates that terms are t
multiplied by 1/2 for each zero index. This series is on
conditionally convergent,9 and depends upon the order
summation. However, the potential at any point in a crys

e:
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lattice must be single-valued, which suggests that differ
orders of summation~i! correspond to different zero-poin
energies associated with the field;~ii ! lead to an infinite set
of potentials associated with any given array.

CURVATURE ENERGY

Quantum mechanics attributes the existence of ze
point energy to the curvature of the wave function describ
the ground state. The curvature energy of a surface is g
by the Helfrich Hamiltonian10

H5E dS@2a~H2g!21bK#, ~2!

whereH and K are the mean and Gaussian curvatures,
spectively, and integration is over the total surface area.
bending rigiditya (a.0) and saddle-splayb (ubu.0) are
the two elastic moduli, whileg is the spontaneous curvatur
which vanishes for balanced surfaces~those which inter-
change the partial sub-spaces which they divide!.

The Gauss–Bonnet theorem relates Gaussian curva
to the Euler–Poincare´ characteristic,x, via 22px5*KdS,
so that the contribution to the curvature energy from
saddle-splay deformation is28pb for both surfaces. In turn
the genus,g, of a surface is related to the Euler–Poinca´
characteristic byg[12x/2. Since the genus must be equ
to zero or to a positive integer,x can take the integer value
of 2, 0, 22, 24... .

Equation~2! can be used to calculate the relative curv
ture energies of the~balanced! P andP* surfaces, assuming
that a and b have the same magnitude and sign for bo
Both surfaces have the same Euler–Poincare´ characteristic of
24. As the mean curvature of a minimal surface vanis
everywhere, for theP surface the contribution to the curva
ture energy from the bending component is zero, and
curvature energy ofP* is larger by an amount 2a*H2dS.
The P surface can, therefore, be considered as the gro
state in terms of curvature energy with a zero-point energ
28pb.

A very close nodal approximation for theP* surface is11

f p5$1,0,0%10.090 039 5$1,1,1%, where$h,k,l% are reflection
planes of the space groupPm3̄m ~No. 221!.12 We have cal-
culated the integral 2*H2dS numerically by summing the
components ofH2 at the center of gravity of each tessalati
polygon over the surface. The distribution ofH2 is shown in
Fig. 1~a! by assigning a color cyclically to each value a
scaled such that the minimum to maximum spans blue to
The mean of the distribution ofH2 over the surface is
1.092 38, and the variance is 3.7251, with a minimum va
of zero and a maximum value of 6.163 88. The curvat
energy of theP surface is thus lower than that of theP*
surface by 2.18476a.

Gozdz and Holyst13 generated a surface of genus 45 w
the symmetry of theP surface, a surface of genus 73 with th
symmetry of theD surface, and surfaces of genera 53, 6
109, and 157 with the symmetry of theG surface. In terms of
symmetry, these high genus surfaces are the equivalen
the P, D, andG TPMS, which are the ground curvature e
ergy states of ZEPS of corresponding symmetry. This s
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gests that multiple solutions of distinct genus, which we co
sider a quantized topological index, occur for a range
different crystal arrays. The Helfrich Hamiltonian for TPM
reduces to a simple expression, which via the Gauss–Bo
theorem may be written asH522pbx, whereubu.0.

The excited states of the crystal constitute an infinity
different ZEPS forming the complete set. For the CsCl l
tice, this is the manifold of surfaces of increasing curvatu
quantized by the Euler–Poincare´ characteristic, with the
same symmetry as theP ~‘‘Schwarz’’! TPMS, which repre-
sents the archetypal structure for this crystal symmetry.
rametrization of theP surface has allowed us to calculate
coordinates analytically.14 Alternatively, the coordinates o
this surface can be given in the formf (x,y,z) as a two-term
nodal expansion of its generating space groupPm3̄m as f p

5$1,0,0%20.150 763$1,1,1%.11

The curvature energy of the basis set of allowed state
therefore, quantized with the Euler–Poincare´ characteristic
as the quantum number. There is thus a connection betw
quantum field theory and surfaces which describe the b
sets of wave functions of the field. We assume that selec
rules governing allowed and forbidden transitions exist.
CsCl, where field states are described by theP* surface and
its higher genus counterparts, quantum transitions may
place from a state of Euler–Poincare´ characteristicx1 to a
state of characteristicx2 , with transition energy22p(x2

2x1)b. There may also be a transition from a statex1 of
one crystal lattice~e.g., CsCl,ba!, to the statex2 of a dif-
ferent crystal lattice~e.g., ZnS,bb!, with transition energy
22p(bbx22bax1). An example of the latter case is th
martensitic transition in steel,15 from a structure of the CsC
type, described by theP surface (x524), to the ZnS type,
described by theD surface (x5216), via the intermediate
G surface (x528). The transition is defined by a singl
parameter, the Bonnet angle.14,16,17

To summarize, the TPMS are the zero equipotentials
the field Hamiltonian. The energy is given byEax

522pxba for a surfacef ax , wherea denotes the symme
try type, andx is the Euler–Poincare´ characteristic of a
member of the manifold of allowed states. The scalar pot
tials are described by TPMS, whose energy is the minim
possible under the Helfrich Hamiltonian. This curvature e
ergy is quantized in units of 2px, which is the consequenc
of the curvature of the scalar potential, from which the fie
is derived by differentiation, with the minimization of sel
energy making the surface minimal. The charge distribut
determines the metric of the potential and hence the field

VECTOR POTENTIAL

The mean curvature of a surface is equal to the div
gence of the unit vector,nÎ , normal to the surface,18 given by
nÎ 5¹I f (rI ), where the functionf (rI ) describes the surface
HenceH5¹I �nÎ 50 at every point. A vector with zero diver
gence and nonzero curl can be represented as the curl o
vector potential,AI , defined as19

AI 52rI3E
0

1

l2nÎ dl, ~3!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. ~Color! ~a! Plot of the distribution of the square of the mean curvature, H2, over the P* zero equipotential surface. The color scale spans H2
min to H2

max

from blue to red~see inset!. ~b! Plot of the magnitude of the current vector fielduJI u permeating a CsCl unit cell at the surface of the P TPMS as the gro
state zero equipotential surface within the crystal lattice~blue to red!. ~c! The magnitude of the vector potential fielduAI u, over the surface of the P TPMS~blue
to red!. Coulomb gauge (¹I �AI 50). The distribution of the magnitude of the vector potential in this gauge over the surface has a mean of 0.078 79
a variance of 0.008 397 37, with a minimum value of zero and a maximum value of 0.160 725.~d! As in ~c!, but in Lorentz gauge (AI 85AI 1¹I f P

TPMS). The
distribution of the magnitude of the vector potential in this gauge over the surface has a mean of 3.280 66, and a variance of 10.7864, with a minime
of 3.046 69 and a maximum value of 3.627 60.
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where rI5(x,y,z). For an electromagnetic field within th
CsCl lattice, the vector potential is an elementary curr
density on theP surface. By Maxwell’s equations, the fiel
within the lattice is electrostatic~¹I 3EI 50 and¹I �EI }r! and
magnetostatic~¹I �HI 50 and ¹I 3HI }JI !. We shall see tha
these equations are defined by geometry alone. The mag
field HI , is the curl of the vector potential,HI 5¹I 3AI . Max-
Downloaded 10 May 2002 to 131.111.99.235. Redistribution subject to A
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well’s third equation gives the current density vectorJI in
terms of the curl of the unit vector normal to the surface,
JI }¹I 3nÎ .

Figure 1~b! shows the magnitude of the current vectorJI
on the P minimal surface calculated using the exa
coordinates.14 The zero contour of the surface was plotted
tessellating polygons. The magnitude of the current vec
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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was calculated at the center of gravity of each polygon,
its distribution represented as a color, scaled such that
range from maximum to minimum spans blue to red. T
value of uJI u spans the range 0–0.790 077 with a mean
0.547 255 and variance 0.335 781 over 5002 tessellation
the surface. The choice of vector potential is arbitrary, si
only curl A is required to reproduce a given field. We ma
therefore, add the gradient of any scalar to Eq.~3! and write
A5A01gradc, since curl gradc50. We use the Coulomb
gauge, which by convention for static fields is chosen s
that divA50, and we have a transverse vector potential@Fig.
1~c!#. The magnitude and direction of the vector potent
may vary considerably depending on the choice of gau
Adding gradf changes the picture markedly@Fig. 1~d!#.

1S. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh, S. Lidin, and
W. Ninham,The Language of Shape. The Role of Curvature in Conden
Matter: Physics, Chemistry and Biology~Elsevier, Amsterdam, 1997!.

2S. Andersson, S. T. Hyde, K. Larsson, and S. Lidin, Chem. Rev.88, 221
~1988!.
Downloaded 10 May 2002 to 131.111.99.235. Redistribution subject to A
d
he
e
f
of
e
,

h

l
e.

.
d

3H. G. von Schnering and R. Nesper, Angew. Chem. Int. Ed. Engl.26, 1059
~1987!.

4H. U. Nissen, Science166, 1150~1969!.
5F. J. Almgren, Math. Intell.4, 164 ~1982!.
6W. Longley and T. J. MacIntosh, Nature~London! 303, 612 ~1983!.
7R. Pease, Nature~London! 411, 986 ~2001!.
8P. J. F. Gandy and J. Klinowski, Chem. Phys. Lett.~to be published!.
9I. Barnes, Austral. Math. Soc. Gazette17, 99 ~1990!.

10W. Helfrich, Z. Naturforsch. C28, 693 ~1973!.
11P. J. F. Gandy, S. Bardhan, A. L. Mackay, and J. Klinowski, Chem. Ph

Lett. 336, 187 ~2001!.
12International Tables for X-ray Crystallography, Vol. 1, Symmetry Groups,

edited by K. Lonsdale and N. F. M. Henry~Kynoch Press for the Interna
tional Union of Crystallography, Birmingham 1952!.

13W. T. Gozdz and R. Holyst, Phys. Rev. E54, 5012~1996!.
14P. J. F. Gandy and J. Klinowski, Chem. Phys. Lett.322, 579 ~2000!.
15S. T. Hyde and S. Andersson, Z. Kristallogr.174, 225 ~1986!.
16P. J. F. Gandy, D. Cvijovic´, A. L. Mackay, and J. Klinowski, Chem. Phys

Lett. 314, 543 ~1999!.
17P. J. F. Gandy and J. Klinowski, Chem. Phys. Lett.321, 363 ~2000!.
18C. E. Weatherburn,The Differential Geometry of Three Dimensions~Cam-

bridge University Press, Cambridge, 1930!, Vol. II, pp. 85–91.
19B. Hague,An Introduction to Vector Analysis~Methuen, London, 1939!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


