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The systematic enumeration of all possible networks of atoms
in inorganic structures is of considerable interest. Of particular
importance are the 4-connected networks (those in which each
atom is connected to exactly four neighbours), which are relevant
to a wide range of systemsÐcrystalline elements, hydrates,
covalently bonded crystals, silicates and many synthetic com-
pounds. Systematic enumeration is especially desirable in the
study of zeolites and related materials, of which there are now 121
recognized structural types1, with several new types being identi-

®ed every year. But as the number of possible 4-connected three-
dimensional networks is in®nite, and as there exists no systematic
procedure for their derivation, the prediction of new structural
types has hitherto relied on empirical methods (see, for example,
refs 2±4). Here we report a partial solution to this problem,
based on recent advances in mathematical tiling theory5±8. We
establish that there are exactly 9, 117 and 926 topological types of,
respectively, 4-connected uninodal, binodal and trinodal net-
works, derived from simple tilings based on tetrahedra. (Here
nodality refers to the number of topologically distinct vertices
from which the network is composed.) We also show that there are
at least 145 more distinct uninodal networks based on a more
complex tiling unit. Of the total number of networks that we have
derived, only two contain neither three- nor four-membered
rings, and most of the binodal and trinodal networks are new.

We de®ne a tiling as a periodic subdivision of space into bounded,
connected regions without holes, which we call tiles. If two tiles
meet along a surface, we call the surface a face. If three or more faces
meet along a curve, we call the curve an edge. Finally, if at least three
edges meet at a point, we call that point a vertex. Vertices and edges
together form a network. A network can be derived from a tiling
whenever it is possible to choose a collection of simple cycles (closed
circuits) such that each edge occurs in at least three of them, and the
cycles can be spanned by non-intersecting faces such that the union
of all faces separates space into tiles. We note the distinction between
faces and rings (usually de®ned as cycles without short cuts9).

We have earlier solved the much simpler problem of classifying all
periodic tilings of the euclidean plane, the sphere and the hyperbolic
plane7,10. Our algorithms10 enumerate, and permit the visualization
of, all possible topological types of tilings for each two-dimensional
symmetry group with 1, 2, 3 (and so on) kinds of inequivalent
vertices. We shall call these uninodal, binodal, trinodal (and so on)
tilings. This approach has been applied to the enumeration of
polyoxometalate cages11. We can now address the three-dimensional
case, which has direct applications to structural chemistry.

The starting point is to associate with each type of periodic tiling
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Figure 1 Derivation of the Delaney symbol for a tiling. a, The periodic tiling (bold

lines) is barycentrically subdivided into triangles. Dotted lines join vertices to tile

centres, and dashed lines join edge centres to tile centres. There are seven

different classes of triangles, labelled A±G. b, Each class of triangle in a is

represented by a node of the graph. The nodes are joined by lines corresponding

to the edges of the triangles. For example, the nodes representing D and E are

joined bya dashed line because the corresponding triangles have a dashed edge

in common. In addition, each node is labelled by two numbers, the ®rst indicating

the number of edges of an original tile containing a triangle of the given class, the

second indicating the degree of an original vertex belonging to a triangle of the

given class (that is, the number of original edges meeting at this vertex). For

example, node G is labelled `4,6' because a triangle of class G is contained in a

four-sided tile and its original vertex is of degree 6. The designation A±G of the

triangles is arbitrary, and the ®nal Delaney symbol is unique for each kind of

periodic tiling.
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a unique `̀ Delaney symbol''6,7. This is arrived at by breaking the
tiling down into simplices using a barycentric subdivision. (Bary-
centric subdivision of a two-dimensional tiling is obtained by
connecting the face centres to the vertices and edge centres: see
Fig. 1a.) Any n � 1 points in n-space which do not lie in an (n 2 1)
dimensional space are the vertices of an n-dimensional simplex. A
simplex in two dimensions is thus a triangle, and in three dimen-
sions a tetrahedron. In the two-dimensional case, the tiling is broken
down into triangles (Fig. 1a), and each class of symmetrically
equivalent triangles is then represented by a vertex of a graph.
Whenever two triangles are adjacent, the corresponding vertices are
joined by an edge. The Delaney symbol is obtained from the graph
by appropriate labelling of vertices and `colouring' of edges (Fig. 1b),
and can alternatively be written as a string of characters, an
`inorganic gene'. The `gene' for the tiling in Fig. 1 is

BAD36 ACE34 CBC34 EGA46 DFB44 GEF44 FDG46

where each group of characters contains information about one
class of triangles in the barycentric subdivision: group 1 for class A,
group 2 for class B, and so on. The letters refer to the neighbours
across dashed, dotted and solid lines, respectively, of this class of
triangles, while the numbers are the same as those inside circles in
Fig. 1b.

The criteria by virtue of which the Delaney symbol encodes a
tiling are as follows. (1) A given tiling translates to a linear sequence
of characters, which can be put into a unique order by a rule, and
vice versa. (2) This sequence is unique to the tiling. (3) There are
rules to decide whether a sequence is `legal', that is, corresponds to
some actual tiling (see Supplementary Information). The classi®ca-
tion of all periodic tilings of a given kind then reduces to the
enumeration of the corresponding Delaney symbols, which is
equivalent to `mutating' the `inorganic gene'. In principle, this
approach can be used in any number of dimensions by dividing
polytopal tiles into simplices.

In two dimensions, there are 11 different topological types of

uninodal tilings, a result already known to Kepler12, and 508 and
16,774 types of binodal and trinodal tilings, respectively10. By
contrast, the number of types of uninodal tilings in three dimen-
sions is in®nite13. However, the number of possibilities becomes
®nite if we also limit the number of faces which can be incident to a
common vertex or, alternatively, the number of faces which can be
incident to a common tile (as well as the number of symmetrically
inequivalent tiles). In the second case, the set of boundary faces of a
given tile forms a two-dimensional tiling, which can be described by
a two-dimensional Delaney symbol. The con®guration of edges,
faces and tiles around a ®xed vertex can also be described by a two-
dimensional Delaney symbol via the so-called vertex ®gure: place
the centre of a small notational sphere at the vertex and consider the
tiling of that sphere formed by the intersections with the different
tiles touching that vertex. Some possible vertex ®gures for 4-
connected networks are shown in Fig. 2.

A speci®c vertex ®gure can be described in terms of a two-
dimensional Delaney symbol (because it is a tiling of the sphere). To
enumerate all possible tilings based on a given vertex ®gure, we must
consider all possible `three-dimensional' extensions of its two-
dimensional symbol. The main dif®culty is to determine which of
the resulting three-dimensional symbols give rise to euclidean
tilings (as opposed to tilings of, say, hyperbolic or spherical
space). A practical solution has been found14, by combining
methods and results from group theory, topology and combinatorics.

Delaney symbols translate classi®cation of tilings into purely
algebraic problems. It only remains to develop and implement
algorithms which solve them. Our computer program considers all
possible `legal' permutations of the `gene', and then generates the
corresponding tiling. We ®rst enumerate all possible vertex ®gures
of the desired kind, using our two-dimensional methods. Second,
using advanced branch-and-bound techniques and the properties
of crystallographic groups, we generate all possible three-dimen-
sional extensions by generating all admissible face pairings and edge
degrees for each feasible combination of vertex ®gures. Third, using
methods from combinatorial group theory and topology, we
determine whether such a tiling can be realized in three-
dimensional euclidean space. Finally, if this is the case, we use
optimization methods to construct a plausible realization of the
actual tiling (see Supplementary Information).

Using this approach, we have been able to give a complete
enumeration of all topological types of simple uninodal, binodal
and trinodal tilings. The various networks generated in this way
were compared with known structures using `̀ coordination
sequence'' ®ngerprinting15,16. Thus in a 4-connected network, each
vertex is connected to N1 � 4 neighbouring vertices. These are
linked to N2 vertices in the next shell, in turn connected to N3

vertices and so on, including each vertex only once. Although the
coordination sequence for each kind of vertex is not unique to a
given structure, it is a useful guide as structures with different
coordination sequences must be different.

Simple tilings can give rise only to structures composed entirely
of cages. We have considered those ®rst, especially since networks
with the lowest density tend to derive from simple tilings. We have
established that there are nine possible topological types of simple
uninodal tilings of euclidean space, each corresponding to a 4-
connected network17,18. Six of them correspond to known zeolites
(structure types SOD, LTA, RHO, FAU, KFI and CHA) and the
remaining three have been described by O'Keeffe3. A systematic
enumeration of all quasi-simple uninodal tilings yields 285 addi-
tional topological types. The total list of 294 tilings gives rise to
at least 154 different 4-connected networks, among them the 12
remaining uninodal zeolites.

The enumeration of structure types with two or more symme-
trically inequivalent types of tetrahedral vertices (binodal, trinodal,
and so on) is addressed in a similar manner. We have established
that there are exactly 117 and 926 topological types of simple

3
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0

Figure 2 Vertex ®gures. The tetrahedral vertex ®gure with no extra edges (top)

gives rise to `simple' tilings; vertex ®gures with extra edges give `quasi-simple'

tilings. The number of extra edges is indicated on the left.
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binodal and trinodal tilings of euclidean space, respectively. Some
examples are shown in Fig. 3. Only two, corresponding to structure
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chalcogenides and halides, to 3- and 4-connected carbon networks
and to structures such as ice. Finally, bubbles found in foams are
polyhedra in simple tilings. This means that every periodic foam
with 1, 2 and 3 kinds of vertex will be found among our total of
1,052 (� 9 � 117 � 926) simple tilings. M
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There has been considerable interest in the structure of liquid
water at low temperatures and high pressure following the
discovery of the high-density amorphous (HDA) phase of ice Ih

(ref. 1). HDA ice forms at a pressure close to the extrapolated
melting curve of ice, leading to the suggestion that it may have
structure similar to that of dense water. On annealing, HDA ice
transforms into a low-density amorphous (LDA) phase with a
distinct phase boundary2,3. Extrapolation of thermodynamic data
along the HDA±LDA coexistence line into the liquid region has
led to the hypothesis that there might exist a second critical point
for water and the speculation that liquid water is mixture of two
distinct structures with different densities4,5. Here we critically
examine this hypothesis. We use quasi-harmonic lattice-dynamics

calculations to show that the amorphization mechanism in ice Ih

changes from thermodynamic melting for T . 162 K to mechani-
cal melting at lower temperatures. The vibrational spectra of ice
Ih, LDA ice and quenched water also indicate a structure for LDA
ice that differs from that of the liquid. These results call into
question the validity of there being a thermodynamic connection
between the amorphous and liquid phases of water.

We used the quasi-harmonic lattice-dynamics6 method to calcu-
late the thermodynamic and mechanical stability boundaries of ice
Ih under pressure. A thermodynamic solid±liquid stability boundary is
determined by the equality of free energies of the two phases. In
contrast, the mechanical stability boundary is obtained from purely
mechanical stability conditions. To test for mechanical stability of
the crystal, we calculated elastic constants at several pressures and
temperatures. The maximum pressure of stability at a given tem-
perature is determined via the Born stability criteria7. A mechanical
instability in a solid occurs when particular combinations of the
elastic constants violate one of the Born stability conditions7. Here
we use a semi-empirical approach, combining the quasi-harmonic
lattice dynamics and the Lindemann criterion for melting, to
compute the thermodynamic melting line of ice Ih. This approach8

has been applied successfully to a number of systems, including the
correct description of the water±ice VI phase boundary. (For a
recent application on related systems see refs 9, 10.)

The mechanical instability line due to the violation of the Born
stability condition C11 2 jC12j . 0 (ref. 7) and the theoretical
thermodynamic curves are compared with experiment in Fig. 1.
The calculated thermodynamic melting curve agrees well with
experiment11 in the low-pressure/high-temperature region; the
mechanical instability line agrees well with experiment in the
high-pressure/low-temperature region. The temperature where
mechanical instability occurs is always higher than the thermo-
dynamic melting point. The most signi®cant theoretical result is
that the thermodynamic melting line meets the mechanical instabil-
ity curve at ,160 K. This result, which agrees with experiment,
shows that there are two distinct mechanisms for pressure-induced
transformation of ice Ih in two different temperature regimes. This
behaviour can be rationalized as follows. At high temperature, the
water molecules have suf®ciently large-amplitude thermal motions
and consequently, the thermodynamic melting process takes pre-
cedence over mechanical instability. In contrast, at temperatures
lower than 160 K the vibrational amplitudes of the water molecules
are reduced, and the crystal structure collapses due to a mechanical
instability under pressure.

In clathrate hydrates and their zeolite silica analogues, the
mechanism for transformations to high-density amorphous
phases at low temperatures has also been established to be a
mechanical instability12,13. In contrast to ice Ih, the high-density
phase made after pressurization in the clathrate hydrates of tetra-
hydrofuran (THF) and sulphur hexa¯uoride12 could not be recov-
ered even at 77 K. Instead, the transformed phase immediately
reverted back to the initial crystalline solid. This reversible trans-
formation would certainly not be feasible if the clathrate had
actually undergone a melting transition to a quenched solution,
as the formation kinetics of clathrate hydrate at 77 K are extremely
slow12. This mechanism has been clearly demonstrated in a com-
bined theoretical and experimental study of pressure-induced
transformations in a THF zeolite13.

Thermodynamic analysis of the extrapolated melting curve for ice
Ih has shown14 that the experimental results at high temperature and
low pressure can be reproduced using reasonable parameters.
However, this approach fails in the high-pressure/low-temperature
region. For ice Ih the predicted amorphization pressure at 80 K of
6 kbar is substantially lower than the 11 kbar observed in experi-
ments. A mechanical instability due to the softening of the elastic
modulus C66 (� C11 2 C12) of the ice structure under high
pressure has been proposed in a molecular dynamics study15.


